Constrained Sequential Pattern Knowledge in Multi-relational Learning
نویسندگان
چکیده
In this work we present XMuSer, a multi-relational framework suitable to explore temporal patterns available in multi-relational databases. XMuSer’s main idea consists of exploiting frequent sequence mining, using an efficient and direct method to learn temporal patterns in the form of sequences. Grounded on a coding methodology and on the efficiency of sequential miners, we find the most interesting sequential patterns available and then map these findings into a new table, which encodes the multi-relational timed data using sequential patterns. In the last step of our framework, we use an ILP algorithm to learn a theory on the enlarged relational database that consists on the original multi-relational database and the new sequence relation. We evaluate our framework addressing three classification problems and running three different sequence miners. Using each one of the sequence miners we can find: all the frequent sequences, all the closed sequences or all the maximal sequences.
منابع مشابه
Analysing the Behaviour of Robot Teams through Relational Sequential Pattern Mining
This report outlines the use of a relational representation in a Multi-Agent domain to model the behaviour of the whole system. A desired property in this systems is the ability of the team members to work together to achieve a common goal in a cooperative manner. The aim is to define a systematic method to verify the effective collaboration among the members of a team and comparing the differe...
متن کاملMulti-Dimensional Relational Sequence Mining
The issue addressed in this paper concerns the discovery of frequent multi-dimensional patterns from relational sequences. The great variety of applications of sequential pattern mining, such as user profiling, medicine, local weather forecast and bioinformatics, makes this problem one of the central topics in data mining. Nevertheless, sequential information may concern data on multiple dimens...
متن کاملPredictive Sequence Miner in ILP Learning
In this work we present an optimized version of XMuSer, an ILP based framework suitable to explore temporal patterns available in multi-relational databases. The main idea behind XMuSer consists of exploiting frequent sequence mining, an efficient and direct method to learn temporal patterns in the form of sequences. The efficiency of XMuSer comes from a new coding methodology and on the use of...
متن کاملAggregation in Confidence-Based Concept Discovery for Multi-Relational Data Mining
Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intract...
متن کاملClassifying Agent Behaviour through Relational Sequential Patterns
In Multi-Agent System, observing other agents and modelling their behaviour represents an essential task: agents must be able to quickly adapt to the environment and infer knowledge from other agents’ deportment. The observed data from this kind of environments are inherently sequential. We present a relational model to characterise adversary teams based on its behaviour using a set of relation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011